
H I G H E R K I N D E D A N D H I G H E R R A N K T Y P E S I N S C A L A

G E T T I N G H I G H E R

Mark Hopkins
@antiselfdual

www.antiselfdual.com

http://www.antiselfdual.com

Packetloop was formed in May 2011 by three security
consulting experts	

Startup acquired by Arbor Networks Sept 2013	

Security analytics as a service	

Realtime event processing, big data	

Development in Scala and Javascript	

pravail.com

http://pravail.com

Higher order functions

Higher kinded types

Higher rank types

T Y P E T H E O R Y

T Y P E T H E O R Y

A magical wonderland of possibilities……
T Y P E T H E O R Y

Higher kinded and higher rank types are cool

Simon Peyton Jones calls them “sexy types”

Not just of academic interest:  
 

they give programmers…

S U P E R P O W E R S ?

In languages like Java we rely on a lot of magic to Get Stuff Done.

• Either magic baked into the language 
e.g. serialisation, enums, iterators

• Or crazy hacks that step outside of the language

• Or unsafe features like down casting, which break the type
system.

• In Scala these “higher” features let us build a lot of the magic
ourselves 
…. safely and without going outside the language

O B J E C T I V E

• Explain a couple of terms from type theory you may come
across

• Hopefully explain why I’m excited about them

• Convince you they’re not scary

• … perhaps already something you already know

• … they enable powerful ways of programming

• … mention a couple of potential pitfalls

T Y P E S A R E A B O U T
S A F E T Y

W H AT I S A T Y P E S Y S T E M ?

A lightweight, ubiquitous, machine-checked formal
system for proving the absence of certain bad program
behaviours.

• lightweight, so programmers can use it

• machine-checked, with minimal programmer help

• ubiquitous, so programmers can’t avoid it

A mini proof checker or static verification tool

– B E N J A M I N P I E R C E

A type system is a (tractable) syntactic method for
automatically checking the absence of certain
erroneous behaviors by classifying program

phrases according to the kinds of values they
compute.

3 + 4 ✓
3 + true ✕

S A F E V S U N S A F E
L A N G U A G E S

S A F E V S U N S A F E
L A N G U A G E S

Safe languages make it impossible to shoot
yourself in the foot while programming

S A F E V S U N S A F E L A N G U A G E S

Safe languages prevent
 untrapped errors

at runtime

e.g. reading data beyond end of array,
SIGSEGV

S A F E V S U N S A F E L A N G U A G E S

A safe languages protects its own abstractions
Things behave themselves.
!

e.g. you can use an array just by knowing about
operations on arrays, not having to worry about
how things are laid out in memory.
!

Applies to both low level and to higher level
features, e.g. scoping, privacy

S TAT I C A L LY
C H E C K E D

D Y N A M I C A L LY
C H E C K E D

S A F E
Scala, Java, Haskell,

ML
Lisp, Scheme, Perl,

Ruby, Python

U N S A F E C, C++

– M A R K M A N A S S E

“The fundamental problem addressed by a type
theory is to insure that programs have meaning.

!

The fundamental problem caused by a type theory
is that meaningful programs may not have

meanings ascribed to them.
!

The quest for richer type systems results from this
tension.”

• reject some legitimate programs

• allow some incorrect programs

That is to say, the type checker will

Progress leads to…

A B S T R A C T I O N

A B S T R A C T I O N
E X P R E S S I V E N E S S
P O LY M O R P H I S M

With increasing abstraction and more sophisticated type
systems, we can

• screen out more incorrect behaviour, automatically

• type check more valid programs

• Abstraction: reducing code duplication by spotting
common patterns

• These common patterns are identified, often
becoming first-class citizens of the language

• Write less code to do more, i.e. more expressive

P O LY M O R P H I S M

• Comes in many flavours

• Instead of writing many similar pieces of code,  
write one, but parametrise it

• Specialise at different parameters to gain different
functionality

P O LY M O R P H I S M

Parametrise by…

• value, i.e. functions

• function, i.e. higher order functions

• type: parametric polymorphism (Java’s generics), 
 inclusion polymorphism (Java’s “polymorphism”),  
 ad hoc polymorphism (overloading)

• structure, eg. type classes

• effects i.e. monads

• shape: this is to parametrisation by type as ‘by function’ is to ‘by value’ 
datatype generic programming

• …..and many more

A B S T R A C T I O N
I S

P O W E R

More than just screening out errors

A type system is a conversation between the
programmer and the compiler

What kind of conversation?

The programmer and the compiler are in a relationship
together.

A bit like a married couple

H A S K E L L

H A S K E L L

J AVA

J AVA

Lack of type inference

J AVA

J AVA

Low power, poor support for abstraction
forces hackery:

AspectJ
annotation processors
bytecode manipulation

unsafe casts
reflection

J AVA

J AVA

J AVA

J AVA

S C A L A ?

S C A L A ?

Somewhere in the middle

F I R S T C L A S S
C I T I Z E N S

An entity in a programming
language is first-class if it supports
all the operations generally
available to other entities.

• it can be named 
val x = 2

• it can be supplied as a parameter 
f(2)

• it can be used anonymously 
val y = sin(2 * x) 

• Machine language does not have first class variables

• C does not have first class arrays

• Java does not have first class functions

• Scala almost has first class types 
Coq, Agda, Isabelle, Idris have real first-class types

Scala has first-class functions

 def f: Int => String = i => “hello” * i

 f(3) // “hellohellohello”

higher order functions  
 - functions that accept or return a function

are also first class: 
 
 def compose[A,B,C]: (B => C) => (A => B) => (A => C) =  
 f => g => a => f(g(a))

 val h = comp[Int,Int,Int](_ * 7)(_ + 3)  
 h(3) // 42

H I G H E R O R D E R F U N C T I O N S

• Ubiquitous in Scala std lib, collection library  
map, fold, filter, collect, sortBy, ….

• combinators

• user-defined control flow abstractions

• Key to Scala’s expressivity

H I G H E R K I N D E D T Y P E

Same thing, but for types

H I G H E R K I N D E D T Y P E

Just as

a function that accepts or returns function(s) is a higher-
order function

so

a type constructor that accepts or returns type
constructor(s) is a higher-kinded type.

H I G H E R K I N D E D T Y P E S

• trait Functor[F[_]] {  
 def map[A, B](fa: F[A])(f: A => B): F[B]  
} 
 
val ListFunctor = Functor[List]  
val strings = List(“red”, “orange”, “yellow”, “green”)  
ListFunctor.map(strings)(_.length)  
// List(3, 6, 6, 5): List[Int]

H I G H E R K I N D E D T Y P E S

Similarly

 K[_, _, _] 
 K[_[_]] 
 K[_[_],_] 
 K[_[_[_[_[_[_[_[_,_]]]]]]]]

As values are classified by their type,  
so types are classified by their kind. 

K ::= * | K -> K

String, Int, Any: *

List: * -> *

List[Int]: *

Monad: (* -> *) -> *

Tuple2: * -> * -> *

A P P L I C AT I O N S

• Used heavily throughout Scala collection library, Scalaz

• Datatype generic programming / polytypic
programming

D ATAT Y P E G E N E R I C P R O G R A M M I N G

List[Int], Tree[Symbol], BinaryTree[Double]

D ATAT Y P E G E N E R I C P R O G R A M M I N G

List[Int], Tree[Symbol], BinaryTree[Double]

D ATAT Y P E G E N E R I C P R O G R A M M I N G

List[Int], Tree[Symbol], BinaryTree[Double]

D ATAT Y P E G E N E R I C P R O G R A M M I N G

List[Int], Tree[Symbol], BinaryTree[Double]

Abstract over shapes, using higher kinded types

D ATAT Y P E G E N E R I C P R O G R A M M I N G

• Generalised map, fold, unfold, traversals that work for
across multiple datatypes (Origami)

• Design patterns as language-level constructs

• Ad-hoc generic programming  
allows eg. rolling your own serialisation mechanism
that works for any datatype (see Shapless)

P R O B L E M 1

N O PA R T I A L A P P L I C AT I O N

case class State[S, A](f: S => (A, S))

No syntax for State[S, _]

N O PA R T I A L A P P L I C AT I O N

Introduce a new type:  
 
type IntState[A] = State[Int, A]

type FromStringFunction[A] = String => A

type TupleWithInt[A] = (A, Int)

type R[A[_]] = List[A[Int]]

N O PA R T I A L A P P L I C AT I O N

case class State[S, A](f: S => (A, S))

No syntax for State[S, _]

though there is a compiler plugin

State[S, ?] 
Tuple[Int, ?] 
Lambda[A => (A,A)] // equivalent to type R[A] = (A, A)  
 
See github.com/non/kind-projector (part of typelevel)

http://github.com/non/kind-projector

N O PA R T I A L A P P L I C AT I O N

or use a type lambda

 
({type f[a] = State[Int,a]})#f

({type f[a] = String => a})#f

({type f[a, b[_]] = b[a]})#f

P R O B L E M 2

Inference for higher kinded types is limited

!

 case class Base[A](a: A)

 case class Recursive[F[_],A](fa: F[A])

 val one = Base(1)  
 println(one) // Base(1)

 val two = Recursive(one) 
 println(two) // Recursive(Base(1))

 val three = Recursive(two) // compilation error!

Have to help the compiler

!

 case class Base[A](a: A)

 case class Recursive[F[_],A](fa: F[A])

 val one = Base(1)  
 println(one) // Base(1)

 val two = Recursive(one) 
 println(two) // Recursive(Base(1))

 val three = {  
 type λ[α] = Recursive[Base, α] 
 Recursive(two : λ[Int]) 
 }  
 println(three) // Recursive(Recursive(Base(1)))

Or…

!

 case class Base[A](a: A)

 case class Recursive[F[_],A](fa: F[A])  
 object Recursive { 
 def apply[FA](fa: FA)(implicit u: Unapply[FA]) = new Recursive(u(fa)) 
 }

 val one = Base(1)  
 println(one) // Base(1)

 val two = Recursive(one) 
 println(two) // Recursive(Base(1))

 val three = Recursive(two) 
 println(three) // Recursive(Recursive(Base(1)))

Unapply

!

 trait Unapply[FA] { 
 type F[_]  
 type A  
 def apply(fa: FA): F[A] 
}

object Unapply { 
 implicit def unapply[F0[_[_], _], G0[_], A0] = new Unapply[F0[G0, A0]] { 
 type F[α] = F0[G0, α] 
 type A = A0  
 def apply(fa: F0[G0, A0]): F[A] = fa  
 } 
}

P R O B L E M 3

Compiler bugs! :(

Variance annotations on higher-kinded type parameters
aren’t dealt with correctly. Fixed in 2.11

Workaround: for now, avoid variance annotations on
higher-kinded type parameters

H I G H E R R A N K T Y P E S

A type is of rank k if, when the type is written as a tree,
no path from the root of the type to a universal quantifier
passes to the left of k arrows.

What?

Say you have this 
def singleton[A](a: A) = List(a)

!

Say you have this 
def singleton[A](a: A) = List(a)

But now you want to abstract over which particular list-
instantiation function you use.

Say you have this 
def singleton[A](a: A) = List(a)

But now you want to abstract over which particular list-
instantiation function you use.

def createList[A,B](f: A => List[A], b: B) = f(b)

Say you have this 
def singleton[A](a: A) = List(a)

But now you want to abstract over which particular list-
instantiation function you use.

def createList[A,B](f: A => List[A], b: B) = f(b)

Does not compile!

It’s “not polymorphic enough”  
The type variables have to be fixed at the invocation site.
But then f is the wrong type to apply to b.

• In Scala, a function like 
def f[A,B,C,D]: A => B => C => D  
 
actually has type 
∀A.∀B.∀C.∀D A => B => C => D  
 
Notice that all the “foralls” are on the outside of the
expression

!

Higher rank types to the rescue!

H I G H E R R A N K T Y P E S

A type is of rank k if, when the type is written as a tree,
no path from the root of the type to a universal quantifier
passes to the left of k arrows.

Rank 2

Rank 3

It’s “not polymorphic enough”  
The type variables have to be fixed at the invocation site.
But then f is the wrong type to apply to b.

Higher rank types to the rescue!

def createList[B](f: A => List[A] forall A, b: B) = f(b)

Now we have enough wiggle room.

But forall doesn’t actually exist in Scala.

Scala only has rank-1 polymorphism.

And only methods have it, not values.

 def	 f[A]	 =	 (a:	 A)	 =>	 (3,	 Set(a))

f has type ∀A. A => (Int, Set[A])

 val	 g	 =	 (d:	 Double)	 =>	 (3,	 Set(d))	

g only has type Double => (Int, Set[Double])

But…. we can encode it with objects!

	 	 	 	 	 trait	 Forall[P[_]	 { 
	 	 	 	 	 	 	 def	 apply[A]:	 P[A] 
	 	 	 	 	 }

	 type	 CreateList[A]	 =	 A	 =>	 List[A]	

	 def	 createList1[B]( 
	 	 	 f:	 Forall[CreateList],	  
	 	 	 b:	 B 
)	 =	 f.apply(b)	

or, with a type lambda,

def	 createList[B]( 
	 	 f:	 Forall[({type	 λ[a]	 =	 a	 =>	 List[a]})#λ],	  
	 	 b:	 B 
)	 =	 f.apply(b)

S U C C E S S !

So it’s just OO then?

Yes and no

R A N K N T Y P E S

• Polymorphism for higher kinded types

• Encapsulation for types

What are they good for?

R A N K N T Y P E S

What are they good for?

• Enforcing invariants for datatypes

• Datatype generic programming 
as map needs rank-1 polymorphism 
so gmap needs rank-2 polymorphism

• Containment: ST monad, region types

• Abstracting over, converting between or combining monads

• Optimisation of recursive functions (deforestation)

E X A M P L E S
R A N K N T Y P E S

trait Square[V[_], A](rows: V[V[A]])

def lookup[V[_],A]:

 Square[V, A] =>

 Forall[B],(V[B], Int) => B] =>

 (Int, Int) => A

S Q U A R E M AT R I C E S

S TAT E T H R E A D (S T) M O N A D

Run code with mutable variables, 
but with safety enforced by the compiler

When you create, read, write a variable, it is wrapped in a type labelled with a type
parameter S.

newVar :: a -> ST s (Ref s a)  
readVar :: Ref s a -> ST s a  
writeVar :: Ref s a -> a -> ST s ()

return :: a -> ST s a  
bind :: ST s a -> (a —> ST s b) -> ST s b  
 
runST :: (forall s. ST s a) -> a rank 2! 
  
S cannot leave the “forall”. It is locally scoped because of the universal quantifier. So
no mutability can leak - the compiler guarantees this!

S TAT E T H R E A D (S T) M O N A D

Run code with mutable variables,  
but with safety enforced by the compiler

 def runST[A](f: Forall[({type λ[S] = ST[S, A]})#λ]): A

S U M M A R Y

• Higher kinded types are higher-order type
constructors

• Higher rank allows polymorphism for higher kinded
types

S U M M A R Y

• Higher kinded types allow us to abstract over type
constructors

• Higher rank polymorphism allows us to abstract over
polymorphic functions

S U M M A R Y

• Greater expressiveness and safety

• Locally scoped types

• Abstraction is power

F I N I S

R E F E R E N C E S A N D F U R T H E R R E A D I N G

Types and programming languages, Benjamin C. Pierce

Type Systems, Luca Cardelli

http://stackoverflow.com/questions/15303437/what-are-the-limitations-on-inference-of-higher-kinded-types-in-scala

Scala: Types of a higher kind, Jed Wesley-Smith, 2003, http://blogs.atlassian.com/2013/09/scala-types-of-a-higher-kind/

Generics of a higher kind, Adriaan Moors, Frank Piessens, Martin Odersky, 2008

Wearing the hair shirt: A retrospective on Haskell: Simon Peyton Jones, 2003

Sexy types in action, Chung-chieh Shan

Scala for Generic Programmers, Bruno C. d. S. Oliveira and Jeremy Gibbons, 2008

Rank 2 type systems and recursive definitions, Trevor Ji, 1995

Lazy Functional State Threads, John Launchbury and Simon L Peyton Jones, 1994

Origami programming, Jeremy Gibbons, 2003

“When can Liskov be lifted?”, blog post by Stephen Compall, 2014, http://typelevel.org/blog/2014/03/09/
liskov_lifting.html

http://stackoverflow.com/questions/15303437/what-are-the-limitations-on-inference-of-higher-kinded-types-in-scala
http://typelevel.org/blog/2014/03/09/liskov_lifting.html

