GETTING HIGHER

HIGHER KINDED AND HIGHER RANK TYPES IN SCALA

Mark Hopkins
@antiselfdual
www.antiselfdual.com

http://www.antiselfdual.com

.
L .\) liI]
- ’-

N ETW ORKS

® Packetloop was formed in May 201 | by three security
consulting experts

@® Startup acquired by Arbor Networks Sept 2013
@ Security analytics as a service

® Realtime event processing, big data

® Development in Scala and Javascript

® pravail.com

http://pravail.com

Higher order functions
Higher kinded types

Higher rank types

TYPE THEORY

(var) (var)
fiVar(a)F frVa(a) fVai (o) f:Vag (o)
fiVai(a) bk flag = az) a2 = az e fiVai(a) b faz:as (spec)
fiVar(ar) b flag = a2)(faz):az (app)
fiVar(a1)F Aas (f(as = a2)(f az2)) : Vas (a2) (gen) o

{}EANf:Var(ar)(Aaz (f(az— a2)(fa2))): (Var (a1)) = Vas (a2)

PRE T HECHESS

THEORY

PA magical wonderland of possibilities......

Higher kinded and higher rank types are cool

Simon Peyton Jones calls them “sexy types”

Not just of academic interest:

they give programmers...

SUPERPOWERS?

In languages like Java we rely on a lot of magic to Get Stuft Done.

Either magic baked into the language
e.g. serialisation, enums, iterators

Or crazy hacks that step outside of the language

Or unsafe features like down casting, which break the type
system.

In Scala these “higher” teatures let us build a lot of the magic
ourselves
.... safely and without going outside the language

OBJECTIVE

Explain a couple of terms from type theory you may come
across

Hopefully explain why I'm excited about them
Convince you they're not scary

... perhaps already something you already know
... they enable powerful ways of programming

... mention a couple of potential pittalls

TYPES ARE ABOUT
SAFETY

WHAT IS A TYPE SYSTEM?

A lightweight, ubiquitous, machine-checked formal

system for proving the absence of certain bad program
behaviours.

e |ightweight, so programmers can use it
e machine-checked, with minimal programmer help
e ubiquitous, so programmers can't avoid it

A mini proof checker or static veritication tool

A type system is a (tractable) syntactic method for

automatically checking the absence of certain
erroneous behaviors by classitying program
phrases according to the kinds of values they
compute.

- BENJAMIN PIERCE

3+4
3 + true

SAFE VS UNSAFE
LANGUAGES

SAFE VS UNSAFE
LANGUAGES

Safe languages make it impossible to shoot
yourself in the foot while programming

SAFE VS UNSAFE LANGUAGES

Safe languages prevent
untrapped errors
at runtime

e.g. reading data beyond end of array,
SIGSEGV

SAFE VS UNSAFE LANGUAGES

A safe languages protects its own abstractions
Things behave themselves.

e.g. you can use an array just by knowing about
operations on arrays, not having to worry about
how things are laid out in memory.

Applies to both low level and to higher level
features, e.g. scoping, privacy

STATICALLY DYNAMICALLY
CHECKED CHECKED

Scala, Java, Haskell, Lisp, Scheme, Perl,
ML Ruby, Python

UNSAFE C, C++

"The fundamental problem addressed by a type
theory is to insure that programs have meaning.

The fundamental problem caused by a type theory
is that meaningful programs may not have
meanings ascribed to them.

The quest for richer type systems results from this
tension.”

-MARK MANASSE

That is to say, the type checker will

reject some legitimate programs

allow some incorrect programs

Progress leads to...

AR
W, 1lclw1 h“

G

W

ABSTRACTION
EXPRESSIVENESS
POLYMORPHISM

With increasing abstraction and more sophisticated type
systems, we can

screen out more incorrect behaviour, automatically

type check more valid programs

Abstraction: reducing code duplication by spotting
common patterns

These common patterns are identified, often
becoming first-class citizens of the language

Write less code to do more, i.e. more expressive

POLYMORPHISM

Comes in many flavours

Instead of writing many similar pieces of code,
write one, but parametrise it

Specialise at different parameters to gain different
functionality

POLYMORPHISM

Parametrise by...
value, i.e. functions
function, i.e. higher order functions
type: parametric polymorphism (Java's generics),
inclusion polymorphism (Java’'s “polymorphism”),
ad hoc polymorphism (overloading)
structure, eg. type classes

effects i.e. monads

shape: this is to parametrisation by type as ‘by function’ is to by value’
datatype generic programming

.....and many more

ABSTRACTION
S
POWER

More than just screening out errors

A type system is a conversation between the
programmer and the compiler

What kind of conversation?

The programmer and the compiler are in a relationship
together.

A bit like a married couple

HASKELL

e

SRy
{ : [

))4
.\ (\ 5 .‘&:

"]
Ol

Oy

-

PR

oy
-Jl’ll‘

M 2

-

.

pa » & N

e B

4.

l'."
L

s

HASKELL

JAVA

Lack of type inference

JAVA

Low power, poor support for abstraction
forces hackery:

Aspect]
annotation processors
bytecode manipulation

unsafe casts
retlection

JAVA

SCALA?

SCALA?

Somewhere in the middle

FIRST CLASS
CITIZENS

An entity in a programming
language is first-class if it supports
all the operations generally
available to other entities.

® it can be named

SAIOU— m;cuum OF

* it can be supplied as a parameter
* it can be used anonymously / ﬂ . _,_,__E .

val y = sin(2 * x) 1 —

—_—‘
| — —

A — ' —

__ﬂ‘\. P

'~'0'.~0 . e . ol . & A “\“) J‘"’..N“‘

Machine language does not have first class variables
C does not have first class arrays
Java does not have first class functions

Scala almost has first class types
Coq, Agda, Isabelle, Idris have real tirst-class types

Scala has first-class functions
def t: Int => String =i => "hello” * i

1(3) // "hellohellohello”

higher order functions
- functions that accept or return a function

are also first class:

def compose[A,B,Cl: B=>C)=>(A=>B)=>A=>C) =
f=>g=>a=>f(ga)

val h = comp[Int,Int,Int](_* 7)(_ + 3)
h(3) /] 42

HIGHER ORDER FUNCTIONS

Ubiquitous in Scala std lib, collection library
map, fold, tilter, collect, sortBy,

combinators
user-defined control flow abstractions

Key to Scala’s expressivity

HIGHER KINDED TYP

Same thing, but for types

HIGHER KINDED TYP

Just as

a function that accepts or returns function(s) is a higher-
order function

SO

a type constructor that accepts or returns type
constructor(s) is a higher-kinded type.

HIGHER KINDED TYPES

trait Functor[F[] {
det map[A, B](fa: F[A])(f: A => B): F[B]
}

val ListFunctor = Functor|List]

val strings = List("red”, "orange”, “yellow”, “green”)
ListFunctor.map(strings)(_.length)
// List(3, 6, 6, 5): List[Int]

HIGHER KIN

D E

Similarly

NP

|

N

) s 11111

D TYP

As values are classitied by their type,
so types are classitied by their kind.

Ki=*|K->K
String, Int, Any: *
List: * ->~

List[Int]: *

Monad: (* -> *) -> *

Tuple2: * -> * > *

APPLICATIONS

Used heavily throughout Scala collection library, Scalaz

Datatype generic programming / polytypic
programming

DATATYP

M
()
M
Z

-RIC PROGRAMMING

List[Int], Tree[Symbol], BinaryTree[Double]

DATATYP

M
()
M
Z

-RIC PROGRAMMING

List[Int], Tree[Symbol], BinaryTree[Double]

DATATYP

M
()
M
Z

-RIC PROGRAMMING

List[Int], Tree[Symbol], BinaryTree[Double]

DATATYP

M
()
M
Z

-RIC PROGRAMMING

List[Int], Tree[Symbol], BinaryTree[Double]

Abstract over shapes, using higher kinded types

-RIC PROGRAMMING

M
()
M
Z

DATATYP

e Generalised map, fold, untold, traversals that work for
across multiple datatypes (Origami)

e Design patterns as language-level constructs
e Ad-hoc generic programming

allows eq. rolling your own serialisation mechanism
that works for any datatype (see Shapless)

PROBLEM 1

NO PARTIAL APPLICATION

case class State[S, A](f: S => (A, S))

No syntax for State[S, _]

NO PARTIAL APPLICATION

Introduce a new type:

type IntState[A]| = Statellnt, A]
type FromStringFunction[A] = String => A
type TupleWithInt[A] = (A, Int)

type R[A[_]] = List[AlInt]]

NO PARTIAL APPLICATION

case class State[S, Al(t: S => (A, 9))
No syntax for State[S, _]

though there is a compiler plugin

StatelS, 7]
Tuple[lnt, 7]
LambdalA => (A A)] // equivalent to type R[A] = (A, A)

See github.com/non/kind-projector (part of typelevel)

http://github.com/non/kind-projector

NO PARTIAL APPLICATION

or use a type lambda

({type f[a] = State[Int,a]})#t
({type f[a] = String => a})#t

({type tla, b[_]] = bla])#t

PROBLEM 2

Inference for higher kinded types is limited

case class Base[Al(a: A)
case class Recursive[F[], Al(ta: F[A])

val one = Base(1)
orintIn(one) // Base(1)

val two = Recursive(one)
orintln(two) // Recursive(Base(1))

val three = Recursive(two)

Have to help the compiler

case class Base[A](a: A)
case class Recursive[F[], Al(fa: F[A))

val one = Base(1)
orintln(one) // Base(1)

val two = Recursive(one)
orintln(two) // Recursive(Base(1))

val three = {
type A[&] = Recursive[Base, «]
Recursive(two : A[Int])

}

orintln(three) // Recursive(Recursive(Base(1)))

Or...

case class Base[A](a: A)

case class Recursive[F[] Al(fa: F[A])

object Recursive {
def apply[FA](fa: FA)(implicit u: Unapply[FA]) = new Recursive(u(fa))

}

val one = Base(1)
println(one) // Base(1)

val two = Recursive(one)
println(two) // Recursive(Base(1))

val three = Recursive(two)
orintIn(three) // Recursive(Recursive(Base(1)))

Unapply

trait Unapply[FA] {
type F[_]
type A
def apply(fa: FA): F[A]
}

object Unapply {
implicit def unapply[FO[_[_], _I, GO[_], AO] = new Unapply[FO[GO, AO]] {
type Fla] = FO[GO, o]
type A = A0
def apply(fa: FO[GO, AQ]): F[A] = fa
}

}

PROBLEM 3

Compiler bugs! :(

Variance annotations on higher-kinded type parameters
aren’t dealt with correctly. Fixed in 2.11

Workaround: for now, avoid variance annotations on
higher-kinded type parameters

" !) =y &
; 5) n iy . =
v~ 2 .._.wuz_. N ; ¢ e — . B e
By Iw o e . 3
"™ . c‘-L : - J P \

o S
-t JJ’.‘ e : J— " -, ~
> %) ¢ . o -
L L =% ’ SN o ot
....V‘(..% LS 7Y o i o .-ﬁ
" g NS . — . .._‘ 4 & ‘. ¥
ly\.nn‘l A I 2 : \v, | .\.n.. w L4 A
> -

SEPRS e T S ek - M R R O
P - o - ’.‘.1 Sebr.- - Y %

A PR }r..vJﬂ(S P \..rrk’ e TR ..IL?. . AT
3 = ..- jl” " (fl»..." ey -u ” . O\LH/A“.‘n.IQ Vi .'&!\ et w.y-ﬁ‘r ‘l 3{&\'}?’{ .
- < x\.:. N Ava”/w"l\y ...‘.l@‘ -f?!.-(ﬂ b | e .. : lt‘V.. u:..rf.) .(..\ mm v‘l‘ll l/,(..

hr\.Pl..., ‘wi."u t\.ﬂu\l

AR .
23 .‘-‘b\

- e
. 3 : ‘o
Pz 1\ 5 ’ v < A
T TR n oA
f.u ' TN BV R 2Ly B v,
ST Lok g AP S LN
s N J__ V:.Ar 2 Y o -
o o 0 ' o .
A L Ve . Q
¢ v ° ey

.

A5 e ¢ OGN

HIGHER RANK TYPES

A type is of rank k if, when the type is written as a tree,
no path from the root of the type to a universal quantifier
passes to the left of k arrows.

Say you have this
def singleton[A](a: A) = List(a)

Say you have this
def singleton[A](a: A) = List(a)

But now you want to abstract over which particular list-
instantiation function you use.

Say you have this
def singleton[A](a: A) = List(a)

But now you want to abstract over which particular list-
instantiation function you use.

def createList[A,B](f: A => List[A], b: B) = f(b)

Say you have this
def singleton[A](a: A) = List(a)

But now you want to abstract over which particular list-
instantiation function you use.

def createList[A,B](f: A => List[A], b: B) = f(b)

't's “not polymorphic enough”
The type variables have to be fixed at the invocation site.
But then f is the wrong type to apply to b.

In Scala, a function like
def f[A,B,C,D]: A == B = C =>D

actually has type
VA.VB.VC.VD A== B => C =D

Notice that all the “foralls” are on the outside of the
expression

Higher rank types to the rescue!

HIGHER RANK TYPES

A type is of rank k if, when the type is written as a tree,
no path from the root of the type to a universal quantifier
passes to the left of k arrows.

| Rank 2

s — (Vtit —t) = s

't's “not polymorphic enough”

The type variables have to be fixed at the invocation site.
But then fis the wrong type to apply to b.

Higher rank types to the rescue!

def createlist[B](f: A => List[A] forall A, b: B) = {(b)

Now we have enough wiggle room.

But forall doesn't actually exist in Scala.

Scala only has rank-1 polymorphism.
And only methods have it, not values.

def f[A] = (a: A) => (3, Set(a))
f has type VA. A => (Int, Set[A])

val g = (d: Double) => (3, Set(d))

g only has type Double => (Int, Set[Double])

But.... we can encode it with objects!

trait Forall[P[] {
def apply[A]: P[A]
}

type CreatelList[A] = A => List[A]

def createlListl[B](
f: Forall[Createlist],
b: B

) = f.apply(b)

or, with a type lambda,

def createlList[B](
f: Forall[({type A[a] = a => List[a]})#A],
b: B

) = f.apply(b)

SUCCESS!

e
Ay

So it's just OO then?

Yes and no

RANK N TYPES

What are they good for?

Polymorphism tor higher kinded types

Encapsulation for types

RANK N TYPES

What are they good for?

Enforcing invariants for datatypes

Datatype generic programming

as map needs rank-1 polymorphism
so gmap needs rank-2 polymorphism

Containment: ST monad, region types

Abstracting over, converting between or combining monads

Optimisation of recursive functions (deforestation)

RANK N TYPES

EXAMPLES

SQUARE MATRICES

trait Square[V[_], Al(rows: V[VIA])
def lookup[V[_],Al:

Square[V, A] =>

Forall[B],(V[B], Int) => B] =>

(Int, Int) => A

STATE THREAD (ST) MONAD

Run code with mutable variables,
but with safety enforced by the compiler

When you create, read, write a variable, it is wrapped in a type labelled with a type
parameter S.

hewVar ::a -—> ST s (Ref s a)

readvVar :: Ref s a -> ST s a

writeVar :: Ref s a ->a -> ST s (O

return :a > ST s a

bind :: STsa->((a—-—>STsb) ->STshb

runST :: (forall s. ST s a) -> a rank 2!

S cannot leave the “forall”. It is locally scoped because of the universal quantifier. So
no mutability can leak - the compiler guarantees this!

STATE THREAD (ST) MONAD

Run code with mutable variables,

out with safety enforced by the compiler

def runST[A](f: Forall[({type A[S] = ST[S, AID#A]): A

SUMMARY

Higher kinded types are higher-order type
constructors

Higher rank allows polymorphism tfor higher kinded
types

SUMMARY

Higher kinded types allow us to abstract over type
constructors

Higher rank polymorphism allows us to abstract over
polymorphic functions

SUMMARY

Greater expressiveness and safety
Locally scoped types

Abstraction is power

REFERENCES AND FURTHER READING

Types and programming languages, Benjamin C. Pierce

Type Systems, Luca Cardelli

http://stackoverflow.com/questions/15303437/what-are-the-limitations-on-inference-of-higher-kinded-types-in-scala
Scala: Types of a higher kind, Jed Wesley-Smith, 2003, http://blogs.atlassian.com/2013/09/scala-types-of-a-higher-kind/
Generics of a higher kind, Adriaan Moors, Frank Piessens, Martin Odersky, 2008

Wearing the hair shirt: A retrospective on Haskell: Simon Peyton Jones, 2003

Sexy types in action, Chung-chieh Shan

Scala for Generic Programmers, Bruno C. d. S. Oliveira and Jeremy Gibbons, 2008

Rank 2 type systems and recursive definitions, Trevor Ji, 1995

Lazy Functional State Threads, John Launchbury and Simon L Peyton Jones, 1994

Origami programming, Jeremy Gibbons, 2003

“When can Liskov be lifted?”, blog post by Stephen Compall, 2014, http://typelevel.org/blog/2014/03/09/
liskov_lifting.html

http://stackoverflow.com/questions/15303437/what-are-the-limitations-on-inference-of-higher-kinded-types-in-scala
http://typelevel.org/blog/2014/03/09/liskov_lifting.html

