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Higher order functions 

Higher kinded types 

Higher rank types



T Y P E  T H E O R Y



T Y P E  T H E O R Y



A magical wonderland of possibilities……
T Y P E  T H E O R Y



Higher kinded and higher rank types are cool



Simon Peyton Jones calls them “sexy types”



Not just of academic interest:  
 

they give programmers…





S U P E R P O W E R S ?

In languages like Java we rely on a lot of magic to Get Stuff Done. 

• Either magic baked into the language 
e.g. serialisation, enums, iterators 

• Or crazy hacks that step outside of the language 

• Or unsafe features like down casting, which break the type 
system. 

• In Scala these “higher” features let us build a lot of the magic 
ourselves 
…. safely and without going outside the language



O B J E C T I V E

• Explain a couple of terms from type theory you may come 
across 

• Hopefully explain why I’m excited about them 

• Convince you they’re not scary 

• … perhaps already something you already know 

• … they enable powerful ways of programming 

• … mention a couple of potential pitfalls



T Y P E S  A R E  A B O U T  
S A F E T Y



W H AT  I S  A  T Y P E  S Y S T E M ?

A lightweight, ubiquitous, machine-checked formal 
system for proving the absence of certain bad program 
behaviours. 

• lightweight, so programmers can use it 

• machine-checked, with minimal programmer help 

• ubiquitous, so programmers can’t avoid  it 

A mini proof checker or static verification tool



–  B E N J A M I N  P I E R C E

A type system is a (tractable) syntactic method for 
automatically checking the absence of certain 
erroneous behaviors by classifying program 

phrases according to the kinds of values they 
compute.



3 + 4  ✓ 
3 + true  ✕



S A F E  V S  U N S A F E  
L A N G U A G E S



S A F E  V S  U N S A F E  
L A N G U A G E S

Safe languages make it impossible to shoot 
yourself in the foot while programming



S A F E  V S  U N S A F E  L A N G U A G E S

Safe languages prevent 
 untrapped errors 

at runtime

e.g. reading data beyond end of array, 
SIGSEGV



S A F E  V S  U N S A F E  L A N G U A G E S

A safe languages protects its own abstractions 
Things behave themselves. 
!

e.g. you can use an array just by knowing about 
operations on arrays, not having to worry about 
how things are laid out in memory. 
!

Applies to both low level and to higher level 
features, e.g. scoping, privacy



S TAT I C A L LY  
C H E C K E D

D Y N A M I C A L LY  
C H E C K E D

S A F E
Scala, Java, Haskell, 

ML
Lisp, Scheme, Perl, 

Ruby, Python

U N S A F E C, C++



– M A R K  M A N A S S E

“The fundamental problem addressed by a type 
theory is to insure that programs have meaning. 

!

The fundamental problem caused by a type theory 
is that meaningful programs may not have 

meanings ascribed to them. 
!

The quest for richer type systems results from this 
tension.” 



• reject some legitimate programs 

• allow some incorrect programs

That is to say, the type checker will



Progress leads to…



A B S T R A C T I O N



A B S T R A C T I O N  
E X P R E S S I V E N E S S  
P O LY M O R P H I S M



With increasing abstraction and more sophisticated type 
systems, we can  

• screen out more incorrect behaviour, automatically 

• type check more valid programs



• Abstraction: reducing code duplication by spotting 
common patterns 

• These common patterns are identified, often 
becoming first-class citizens of the language 

• Write less code to do more,  i.e. more expressive



P O LY M O R P H I S M

• Comes in many flavours 

• Instead of writing many similar pieces of code,  
write one, but parametrise it 

• Specialise at different parameters to gain different 
functionality



P O LY M O R P H I S M

Parametrise by… 

• value, i.e. functions 

• function, i.e. higher order functions 

• type: parametric polymorphism (Java’s generics), 
         inclusion polymorphism (Java’s “polymorphism”),  
         ad hoc polymorphism (overloading) 

• structure, eg. type classes 

• effects i.e. monads 

• shape: this is to parametrisation by type as ‘by function’ is to ‘by value’ 
datatype generic programming 

• …..and many more



A B S T R A C T I O N  
I S  

P O W E R



More than just screening out errors



A type system is a conversation between the 
programmer and the compiler



What kind of conversation?



The programmer and the compiler are in a relationship 
together. 

A bit like a married couple



H A S K E L L



H A S K E L L



J AVA



J AVA

Lack of type inference



J AVA



J AVA

Low power, poor support for abstraction  
forces hackery:

AspectJ 
annotation processors 
bytecode manipulation 

unsafe casts 
reflection 



J AVA



J AVA



J AVA



J AVA



S C A L A ?



S C A L A ?

Somewhere in the middle



F I R S T  C L A S S  
C I T I Z E N S

An entity in a programming 
language is first-class if it supports 
all the operations generally 
available to other entities. 

• it can be named 
val x = 2 

• it can be supplied as a parameter 
f(2) 

• it can be used anonymously 
val y = sin(2 * x) 



• Machine language does not have first class variables 

• C does not have first class arrays 

• Java does not have first class functions 

• Scala almost has first class types 
Coq, Agda, Isabelle, Idris have real first-class types



Scala has first-class functions 

  def f: Int => String = i => “hello” * i 

  f(3) // “hellohellohello”



higher order functions  
  - functions that accept or return a function 

are also first class: 
 
  def compose[A,B,C]: (B => C) => (A => B) => (A => C) =  
  f => g => a => f(g(a)) 

  val h = comp[Int,Int,Int](_ * 7)(_ + 3)  
  h(3)       // 42



H I G H E R  O R D E R  F U N C T I O N S

• Ubiquitous in Scala std lib, collection library  
map, fold, filter, collect, sortBy, …. 

• combinators 

• user-defined control flow abstractions 

• Key to Scala’s expressivity



H I G H E R  K I N D E D  T Y P E

Same thing, but for types



H I G H E R  K I N D E D  T Y P E

Just as 

a function that accepts or returns function(s) is a higher-
order function 

so 

a type constructor that accepts or returns type 
constructor(s) is a higher-kinded type.



H I G H E R  K I N D E D  T Y P E S

• trait Functor[F[_]] {  
  def map[A, B](fa: F[A])(f: A => B): F[B]  
} 
 
val ListFunctor = Functor[List]  
val strings = List(“red”, “orange”, “yellow”, “green”)  
ListFunctor.map(strings)(_.length)  
// List(3, 6, 6, 5): List[Int]



H I G H E R  K I N D E D  T Y P E S

Similarly 

  K[_, _, _] 
  K[_[_]] 
  K[_[_],_] 
  K[_[_[_[_[_[_[_[_,_]]]]]]]]



As values are classified by their type,  
so types are classified by their kind. 

K ::= * | K -> K 

String, Int, Any: * 

List: * -> * 

List[Int]: * 

Monad: (* -> *) -> * 

Tuple2: * -> * -> * 



A P P L I C AT I O N S

• Used heavily throughout Scala collection library, Scalaz 

• Datatype generic programming / polytypic 
programming



D ATAT Y P E  G E N E R I C  P R O G R A M M I N G

List[Int], Tree[Symbol], BinaryTree[Double] 



D ATAT Y P E  G E N E R I C  P R O G R A M M I N G

List[Int], Tree[Symbol], BinaryTree[Double] 



D ATAT Y P E  G E N E R I C  P R O G R A M M I N G

List[Int], Tree[Symbol], BinaryTree[Double] 



D ATAT Y P E  G E N E R I C  P R O G R A M M I N G

List[Int], Tree[Symbol], BinaryTree[Double]  

Abstract over shapes, using higher kinded types



D ATAT Y P E  G E N E R I C  P R O G R A M M I N G

• Generalised map, fold, unfold, traversals that work for 
across multiple datatypes (Origami) 

• Design patterns as language-level constructs 

• Ad-hoc generic programming  
allows eg. rolling your own serialisation mechanism 
that works for any datatype (see Shapless)



P R O B L E M  1



N O  PA R T I A L  A P P L I C AT I O N  

case class State[S, A](f: S => (A, S)) 

No syntax for State[S, _] 



N O  PA R T I A L  A P P L I C AT I O N  

Introduce a new type:  
 
type IntState[A] = State[Int, A] 

type FromStringFunction[A] = String => A 

type TupleWithInt[A] = (A, Int) 

type R[A[_]] = List[A[Int]] 



N O  PA R T I A L  A P P L I C AT I O N  

case class State[S, A](f: S => (A, S)) 

No syntax for State[S, _] 

though there is a compiler plugin 

State[S, ?] 
Tuple[Int, ?] 
Lambda[A => (A,A)] // equivalent to type R[A] = (A, A)  
 
See github.com/non/kind-projector (part of typelevel) 

http://github.com/non/kind-projector


N O  PA R T I A L  A P P L I C AT I O N  

or use a type lambda 

 
({type f[a] = State[Int,a]})#f 

({type f[a] = String => a})#f 

({type f[a, b[_]] = b[a]})#f



P R O B L E M  2



Inference for higher kinded types is limited

!

  case class Base[A](a: A) 

  case class Recursive[F[_],A](fa: F[A]) 

  val one = Base(1)  
  println(one)                            // Base(1) 

  val two = Recursive(one) 
  println(two)                            // Recursive(Base(1)) 

  val three = Recursive(two)   // compilation error!



Have to help the compiler

!

  case class Base[A](a: A) 

  case class Recursive[F[_],A](fa: F[A]) 

  val one = Base(1)  
  println(one)            // Base(1) 

  val two = Recursive(one) 
  println(two)            // Recursive(Base(1)) 

  val three = {  
    type λ[α] = Recursive[Base, α] 
    Recursive(two : λ[Int]) 
  }   
  println(three)         // Recursive(Recursive(Base(1)))



Or…

!

  case class Base[A](a: A) 

  case class Recursive[F[_],A](fa: F[A])  
  object Recursive { 
   def apply[FA](fa: FA)(implicit u: Unapply[FA]) = new Recursive(u(fa)) 
  } 

  val one = Base(1)  
  println(one)            // Base(1) 

  val two = Recursive(one) 
  println(two)            // Recursive(Base(1)) 

  val three = Recursive(two) 
  println(three)         // Recursive(Recursive(Base(1)))



Unapply

!

 trait Unapply[FA] { 
    type F[_]  
    type A  
    def apply(fa: FA): F[A] 
}   

object Unapply { 
  implicit def unapply[F0[_[_], _], G0[_], A0] = new Unapply[F0[G0, A0]] { 
      type F[α] = F0[G0, α] 
      type A = A0    
      def apply(fa: F0[G0, A0]): F[A] = fa  
  } 
} 



P R O B L E M  3



Compiler bugs! :( 

Variance annotations on higher-kinded type parameters 
aren’t dealt with correctly. Fixed in 2.11 

Workaround: for now, avoid variance annotations on 
higher-kinded type parameters 







H I G H E R  R A N K  T Y P E S

A type is of rank k if, when the type is written as a tree, 
no path from the root of the type to a universal quantifier 
passes to the left of k arrows.



What?



Say you have this 
def singleton[A](a: A) = List(a) 

!



Say you have this 
def singleton[A](a: A) = List(a) 

But now you want to abstract over which particular list-
instantiation function you use.  



Say you have this 
def singleton[A](a: A) = List(a) 

But now you want to abstract over which particular list-
instantiation function you use.  

def createList[A,B](f: A => List[A], b: B) = f(b) 



Say you have this 
def singleton[A](a: A) = List(a) 

But now you want to abstract over which particular list-
instantiation function you use.  

def createList[A,B](f: A => List[A], b: B) = f(b) 

Does not compile!



It’s “not polymorphic enough”  
The type variables have to be fixed at the invocation site. 
But then f is the wrong type to apply to b. 



• In Scala, a function like 
def f[A,B,C,D]: A => B => C => D  
 
actually has type 
∀A.∀B.∀C.∀D A => B => C => D  
 
Notice that all the “foralls” are on the outside of the 
expression



!

Higher rank types to the rescue! 



H I G H E R  R A N K  T Y P E S

A type is of rank k if, when the type is written as a tree, 
no path from the root of the type to a universal quantifier 
passes to the left of k arrows.





Rank 2





Rank 3



It’s “not polymorphic enough”  
The type variables have to be fixed at the invocation site. 
But then f is the wrong type to apply to b. 

Higher rank types to the rescue! 

def createList[B](f: A => List[A] forall A, b: B) = f(b) 

Now we have enough wiggle room.



But forall doesn’t actually exist in Scala. 

Scala only has rank-1 polymorphism. 

And only methods have it, not values. 

     def	  f[A]	  =	  (a:	  A)	  =>	  (3,	  Set(a))       

f has type ∀A. A => (Int, Set[A]) 

     val	  g	  =	  (d:	  Double)	  =>	  (3,	  Set(d))	  

g only has type  Double => (Int, Set[Double])



But…. we can encode it with objects!



	  	  	  	  	  trait	  Forall[P[_]	  { 
	  	  	  	  	  	  	  def	  apply[A]:	  P[A] 
	  	  	  	  	  }



	  type	  CreateList[A]	  =	  A	  =>	  List[A]	  

	  def	  createList1[B]( 
	  	  	  f:	  Forall[CreateList],	   
	  	  	  b:	  B 
	  )	  =	  f.apply(b)	  



or, with a type lambda, 

def	  createList[B]( 
	  	  f:	  Forall[({type	  λ[a]	  =	  a	  =>	  List[a]})#λ],	   
	  	  b:	  B 
)	  =	  f.apply(b)



S U C C E S S !



So it’s just OO then? 

Yes and no



R A N K  N  T Y P E S

• Polymorphism for higher kinded types 

• Encapsulation for types

What are they good for?



R A N K  N  T Y P E S

What are they good for?  

• Enforcing invariants for datatypes 

• Datatype generic programming 
as map needs rank-1 polymorphism 
so gmap needs rank-2 polymorphism 

• Containment: ST monad, region types 

• Abstracting over, converting between or combining monads 

• Optimisation of recursive functions (deforestation)



E X A M P L E S
R A N K  N  T Y P E S



trait Square[V[_], A](rows: V[V[A]]) 

def lookup[V[_],A]:  

  Square[V, A] =>  

  Forall[B],(V[B], Int) => B] =>  

  (Int, Int) => A

S Q U A R E  M AT R I C E S



S TAT E  T H R E A D  ( S T )  M O N A D

Run code with mutable variables, 
but with safety enforced by the compiler 

When you create, read, write a variable, it is wrapped in a type labelled with a type 
parameter S.  

newVar   :: a -> ST s (Ref s a)  
readVar  :: Ref s a -> ST s a  
writeVar :: Ref s a -> a -> ST s () 

return   :: a -> ST s a  
bind     :: ST s a -> (a —> ST s b) -> ST s b  
 
runST    :: (forall s. ST s a) -> a                rank 2! 
  
S cannot leave the “forall”. It is locally scoped because of the universal quantifier. So 
no mutability can leak - the compiler guarantees this!



S TAT E  T H R E A D  ( S T )  M O N A D

Run code with mutable variables,  
but with safety enforced by the compiler 

  def runST[A](f: Forall[({type λ[S] = ST[S, A]})#λ]): A  



S U M M A R Y

• Higher kinded types are higher-order type 
constructors 

• Higher rank allows polymorphism for higher kinded 
types



S U M M A R Y

• Higher kinded types allow us to abstract over type 
constructors 

• Higher rank polymorphism allows us to abstract over 
polymorphic functions



S U M M A R Y

• Greater expressiveness and safety  

• Locally scoped types 

• Abstraction is power



F I N I S
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